3.3 HW Problems
Table of Contents:
Powers, Multiples, Sums, and Differences
Derivative of a Constant Function
- A basic rule of differentiation is that the derivative of every constant function is zero.
$$
\frac{df}{dx}=\frac{d}{dx}(c)=0
$$

Proof:
$$
f'(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim_{h \rightarrow 0} \frac{c-c}{h}= \lim_{h \rightarrow 0}0=0
$$
Derivative of a Positive Integer Power
- If n is a positive integer, then
$$
\frac{d}{dx}x^n=nx^{n-1}
$$

Power Rule (general version) → $f(x)=n^x$
- If n is any real number, then
$$
\frac{d}{dx}x^n=nx^{n-1}
$$
Example:
- Differentiate the following powers of x.
- $x^3$
- $x^{2/3}$
- $x^{\sqrt{2}}$
- $\frac{1}{x^4}$
- $x^{-4/3}$
- $\sqrt{x^{2+\pi}}$