3.3 HW Problems


Table of Contents:


Powers, Multiples, Sums, and Differences

Derivative of a Constant Function

$$ \frac{df}{dx}=\frac{d}{dx}(c)=0 $$

Untitled

Proof:

$$ f'(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim_{h \rightarrow 0} \frac{c-c}{h}= \lim_{h \rightarrow 0}0=0 $$

Derivative of a Positive Integer Power

$$ \frac{d}{dx}x^n=nx^{n-1} $$

Untitled

Power Rule (general version) → $f(x)=n^x$

$$ \frac{d}{dx}x^n=nx^{n-1} $$

Example: