2.6 HW Problems


Table of Contents:


Finite Limits as $x \rightarrow \pm \infin$

Untitled

$$ \lim_{x \rightarrow \, \infin} \frac{1}{x}=0 $$

$$ \lim_{x \rightarrow \, -\infin} \frac{1}{x}=0 $$

$$ \lim_{x \rightarrow \, 0^+} \frac{1}{x}=\infin $$

$$ \lim_{x \rightarrow \, 0^-} \frac{1}{x}=-\infin $$


3 Cases for Rational Functions $x \rightarrow \pm \infin$

  1. Degree of denominator is GREATER than numerator.

    1. answer → ALWAYS 0

    $$ \lim_{x \rightarrow \, \infin} \frac{x^{\color{yellow}2}-x}{x^{\color{green}3}}+1 $$

    $$ \lim_{x \rightarrow \, \infin} \frac{x^2-x}{x^3+1} \rightarrow \frac{\cancel{\frac{x^2}{x^2}}-\frac{x}{x^2}}{\frac{x^3}{x^2}+\frac{1}{x^2}} \rightarrow \frac{1-\xcancel{\frac{1}{x^2}}}{x+\xcancel{\frac{1}{x^2}}} = 0 $$

  2. Degree of numerator is GREATER than denominator.

    1. answer → $\infin$ (or $-\infin$ if the x is negative)

      $$ \lim_{x \rightarrow \, \infin} \frac{x^{\color{yellow}3}+x}{x^{\color{green}2}}-x $$

      $$ \lim_{x \rightarrow \, \infin} \frac{x^3+x}{x^2-x} \rightarrow \frac{\frac{x^3}{x^2}+\frac{x}{x^2}}{\cancel{\frac{x^2}{x^2}}-\frac{x}{x^2}} \rightarrow \frac{x+\xcancel{\frac{1}{x}}}{1-\xcancel{\frac{1}{x}}} = \infin $$

  3. Degree is the SAME. 1.

     $$
     \\lim_{x \\rightarrow \\, \\infin} \\frac{2x^{\\color{yellow}2}+1}{3x^{\\color{green}2}}-2
     $$
     
     $$
     \\lim_{x \\rightarrow \\, \\infin} \\frac{2x^2+1}{3x^2-2} \\rightarrow \\frac{\\cancel{\\frac{2x^2}{x^2}}+\\frac{1}{x^2}}{\\cancel{\\frac{3x^2}{x^2}}-\\frac{2}{x^2}} \\rightarrow \\frac{2+\\xcancel{\\frac{1}{x^2}}}{3-\\xcancel{\\frac{2}{x^2}}} = \\frac{2}{3}
     $$
    

Interesting Cases…

$$ \lim_{x\rightarrow 0^+} \frac{1}{x^\frac{\color{yellow}{2}}{3}} = \infin $$

$$ \lim_{x\rightarrow 0^-} \frac{1}{x^\frac{\color{yellow}{2}}{3}} = \infin $$

$$ \lim_{x\rightarrow 0} \frac{1}{x^\frac{\color{yellow}{2}}{3}} = \infin $$

$$ \lim_{x \rightarrow 0^+} \frac{1}{x^\frac{\color{yellow}{1}}{3}} = \infin $$

$$ \lim_{x \rightarrow 0^-} \frac{1}{x^\frac{\color{yellow}{1}}{3}} = -\infin $$

$$ \lim_{x \rightarrow 0} \frac{1}{x^\frac{\color{yellow}{1}}{3}} = DNE \, \leftarrow \text{since L and R side isn't the same} $$

$$ (-9)^2=+81 $$

$$ (-1)^2 = +1 $$